A multivariate, multitaper approach to detecting and estimating harmonic response in cortical optical imaging data.

نویسندگان

  • A T Sornborger
  • T Yokoo
چکیده

The efficiency and accuracy of cortical maps from optical imaging experiments have been improved using periodic stimulation protocols. The resulting data analysis requires the detection and estimation of periodic information in a multivariate dataset. To date, these analyses have relied on discrete Fourier transform (DFT) sinusoid estimates. Multitaper methods have become common statistical tools in the analysis of univariate time series that can give improved estimates. Here, we extend univariate multitaper harmonic analysis methods to the multivariate, imaging context. Given the hypothesis that a coherent oscillation across many pixels exists within a specified bandwidth, we investigate the problem of its detection and estimation in noisy data by constructing Hotelling's generalized T(2)-test. We then extend the investigation of this problem in two contexts, that of standard canonical variate analysis (CVA) and that of generalized indicator function analysis (GIFA) which is often more robust in extracting a signal in spatially correlated noise. We provide detailed information on the fidelities of the mean estimates found with our methods and comparison with DFT estimates. Our results indicate that GIFA provides particularly good estimates of harmonic signals in spatially correlated noise and is useful for detecting small amplitude harmonic signals in applications such as biological imaging measurements where spatially correlated noise is common. We demonstrate the power of our methods with an optical imaging dataset of the periodic response to a periodically rotating oriented drifting grating stimulus experiment in cat visual cortex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatiotemporal analysis of optical imaging data.

Previous methods for analyzing optical imaging data have relied heavily on temporal averaging. However, response dynamics are rich sources of information. Here, we develop and present a method that combines principal component analysis and multitaper harmonic analysis to extract the statistically significant spatial and temporal response from optical imaging data. We apply the method to both si...

متن کامل

Shadle & Ramsay: Multitaper harmonic analysis of fricatives MULTITAPER ANALYSIS OF FUNDAMENTAL FREQUENCY VARIATIONS DURING VOICED FRICATIVES

A method for tracking fundamental frequency variations in speech is proposed, based on multitaper analysis. Using the multitaper technique, a statistical test is developed for detecting the presence of harmonic components at multiples of a fundamental frequency, embedded in coloured noise. It is shown that this can be applied to speech to estimate the fundamental frequency, when present, as wel...

متن کامل

Analysis of dynamic brain imaging data.

Modern imaging techniques for probing brain function, including functional magnetic resonance imaging, intrinsic and extrinsic contrast optical imaging, and magnetoencephalography, generate large data sets with complex content. In this paper we develop appropriate techniques for analysis and visualization of such imaging data to separate the signal from the noise and characterize the signal. Th...

متن کامل

Optical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)

Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...

متن کامل

Detecting Surface Waters Using Data Fusion of Optical and Radar Remote Sensing Sensor

Identification and monitoring of surface water using remote sensing have become very important in recent decades due to its importance in human needs and political decisions. Therefore, surface water has been studied using remote sensing systems and Sentinel-1 and Sentinel-2 sensors in this study. In this paper, two data fusion approaches and decision fusion improve the accuracy of surface wate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 203 1  شماره 

صفحات  -

تاریخ انتشار 2012